Интеллектуальные системы в управлении грузовым автомобильным транспортом. Интеллектуальная транспортная система

  • Дата: 02.07.2020

Использующая инновационные разработки в моделировании транспортных систем и регулировании транспортных потоков, предоставляющая конечным потребителям большую информативность и безопасность, а также качественно повышающая уровень взаимодействия участников движения по сравнению с обычными транспортными системами.

Несмотря на то, что фактически ИТС может включать все виды транспорта, европейское определение ИТС согласно директиве 2010/40/EU of 7 July 2010 трактует ИТС как систему, в которой применяются информационные и коммуникационные технологии в сфере автотранспорта (включая инфраструктуру, транспортные средства, участников системы, а также дорожно-транспортное регулирование), и имеющую наряду с этим возможность взаимодействия с другими видами транспорта.

Предпосылки

Интерес к ИТС появился с приходом проблем дорожных заторов как результат объединения современных технологий моделирования, управления в реальном времени, а также коммуникационных технологий. Дорожные заторы появляются по всему миру как результат увеличивающейся автомобилизации, урбанизации, а также как роста населения, так и увеличивающейся плотности заселения территории. Дорожные заторы уменьшают эффективность дорожно-транспортной инфраструктуры, увеличивая таким образом время пути, расход топлива и уровень загрязнения окружающей среды.

Интеллектуальные транспортные технологии

ИТС различаются по применяемым технологиям: от простых систем автомобильной навигации, регулирования светофоров, систем регулирования грузоперевозок, различных систем оповестительных знаков (включая информационные табло), систем распознавания автомобильных номеров и систем регистрации скорости транспортных средств, до систем видеонаблюдения, а также до систем, интегрирующих информационные потоки и потоки обратной связи из большого количества различных источников, например из систем управления парковками (Parking guidance and information (PGI) systems), метеослужб, систем разведения мостов и прочих. Более того, в ИТС могут применяться технологии предсказывания на основе моделирования и накопленной ранее информации.

Беспроводная связь

В ИТС могут использоваться различные виды беспроводной связи.

Например, может использоваться радиосвязь на большие (ДМВ) и короткие (УКВ) расстояния.

На небольших расстояниях может использоваться беспроводная связь по стандартам IEEE 802.11 (Wi-Fi), особенно стандарт IEEE 802.11p (WAVE). Также, например, в США используется стандарт DSRC , продвигаемый американской общественной организацией интеллектуального транспорта и департаментом транспорта США .

Вычислительные технологии

Современные разработки в технологиях встраиваемых систем позволяют использовать операционные системы реального времени, а также более высокоуровневые приложения, дающие возможность применять разработки в области искусственного интеллекта. Рост мощностей процессоров, используемых во встраиваемых системах, а также повышение их совместимости с процессорами в персональных компьютерах, ведёт к расширению возможностей повторного использования кода и переносу более интеллектуальных сервисов с уровня ПК в уровень встраиваемой системы.

См. также

Ссылки

  • Railway Safety, Reliability, and Security: Technologies and Systems Engineering. Francesco Flammini (IEEE Computer Society, Italy)
  • Интеллектуальные транспортные системы на сайте ФЦП «Повышение безопасности дорожного движения в 2006-2012 годах»
  • Иностранный опыт: Интеллектуальные транспортные системы

¦¦ Q-Free ASA ¦ Краткое изложение проблемы безопасности дорожного движения Как плата за пользование дорогами может повысить безопасность дорожного движения Перспективы на будущее РАССМАТРИВАЕМЫЕ ТЕМЫ 20. april 2013Как плата за пользование дорогами может повысить безопасность дорожного движения Страница 2


¦¦ Q-Free ASA ¦ Дорожный транспорт ежегодно убивает и калечит миллионы людей. Только в Западной Европе более человек ежегодно погибает в дорожно-транспортных происшествиях. Количество людей, получающих серьезные травмы, в десять раз больше. А горе, боль, и проблемы, обрушивающиеся на людей, измерить просто невозможно. Если бы авиационный транспорт имел такой же уровень аварийности, как дорожный, все воздушные перевозки были бы немедленно запрещены, а транспорт посажен на землю. Нам необходимо повышение безопасности дорожного движения, чтобы количество погибших и искалеченных на дорогах людей сравнялось с нулем. Итак, как плата за пользование дорогами может способствовать повышению безопасности дорожного движения? ДОРОЖНОЕ ДВИЖЕНИЕ УБИЙЦА 20. april 2013Как плата за пользование дорогами может повысить безопасность дорожного движения Страница 3


¦¦ Q-Free ASA ¦ На дорожные происшествия и их последствия влияют три разных фактора: Человеческий фактор –Изменение поведения, снижение скорости передвижения, отказ от приема наркотиков при управлении транспортным средством все это способствует повышению безопасности дорожного движения. Транспортное средство –Если человек допускает ошибку и попадает в дорожно-транспортное происшествие, способность транспортного средства защитить участников происшествия во многом определяет исход несчастного случая. Инфраструктура –В перспективе инфраструктура может активно работать на предотвращение несчастных случаев, а при возникновении несчастного случая обеспечивать пассивную защиту. Общим для всех этих факторов является то, что улучшение любого из них требует вложения денежных средств. Плата за пользование дорогами может дать эти средства.. ЧТО МОЖЕТ ПОВЫСИТЬ БЕЗОПАСНОСТЬ 20. april 2013Как плата за пользование дорогами может повысить безопасность дорожного движения Страница 4


¦¦ Q-Free ASA ¦ УЛУЧШЕНИЕ ИНФРАСТРУКТУРЫ Плата за пользование дорогами десятилетиями использовалась для повышения безопасности дорожной инфраструктуры. Некоторые примеры: Лобовые столкновения –Преобразование обычных дорог в автострады с физическим разделением между полосами встречного движения. Аварии, связанные с выносом автомобиля за пределы дороги –Меры, предназначенные для удержания автомобилей на дороге (ограждения), и меры, направленные на удаление опасных объектов с проезжей части, могут сохранить много жизней. Разделение «мягкого» и «жесткого» дорожного движения –Это можно обеспечить путем строительства специальных полос для мягкого движения, что опять же позволит сохранить множество жизней. 20. april 2013Как плата за пользование дорогами может повысить безопасность дорожного движения Страница год число дорожно-транспортных происшествий внутри/за пределами городских районов Евросоюза 2005 год число дорожно-транспортных происшествий со смертельным исходом внутри/за пределами городских районов Евросоюза 2005 год распределение погибших участников дорожно-транспортных происшествий в Евросоюзе по типу участия 2005 год распределение погибших участников дорожно-транспортных происшествий в Евросоюзе по половому признаку за пределами внутри женщин ы мужчины внутри за пределами


¦¦ Q-Free ASA ¦ Информация о дорожном движении –Измерение состояния дорожного покрытия и метеорологических условий. –Измерение транспортного потока и скорости дорожного движения. –Обнаружение дорожно-транспортных происшествий и других несчастных случаев. –Передача информации через: –TMC канал дорожных сообщений –RDS служба передачи радиоданных –Дорожные знаки переменной информации УЛУЧШЕНИЕ ИНФРАСТРУКТУРЫ (ПРОДОЛЖЕНИЕ) 20. april 2013Как плата за пользование дорогами может повысить безопасность дорожного движения Страница 6


¦¦ Q-Free ASA ¦ ПЛАТА ЗА ПОЛЬЗОВАНИЕ ДОРОГАМИ Системы оплаты за пользование дорогами служат своей цели двумя способами: –Во-первых, система оплаты дает денежные средства, которые можно использовать для внедрения различных усовершенствований для повышения безопасности инфраструктуры дорожного движения. –Во-вторых, система оплаты сама по себе является источником важных данных для административных органов, поскольку пункты оплаты могут в любое время предоставить информацию о потребностях в дорожных работах. 20. april 2013Как плата за пользование дорогами может повысить безопасность дорожного движения Страница 7


¦¦ Q-Free ASA ¦ ДВА ПРИМЕРА Португалия –Плата за пользование дорогами служила основным источником финансирования строительства новых автомагистралей в стране. Стокгольм, Швеция –Плата за дорожные «пробки» использовалась для уменьшения пиковой нагрузки, собирая средства для увеличения пропускной способности и повышения безопасности дорог. 20. april 2013Как плата за пользование дорогами может повысить безопасность дорожного движения Страница 8 Карта автомагистралей Португалии Плата за дорожные пробки в Стокгольме


¦¦ Q-Free ASA ¦ РЕЗУЛЬТАТЫ В ПОРТУГАЛИИ Создано частно-государственное партнерство для расширения сети автомагистралей Сеть расширена с 750 км (в 1995 году) до 1750 км (2010 год) Источник финансирования плата за пользование дорогами Выгода: Сокращение времени в пути Повышение мобильности –Снижение смертности на дорогах с 300 до 100 человек на 1 миллион жителей в течение десяти лет после 2007 года. 20. april 2013Как плата за пользование дорогами может повысить безопасность дорожного движения Страница Португалия


¦¦ Q-Free ASA ¦ РЕЗУЛЬТАТЫ В СТОКГОЛЬМЕ Дорожное движение сократилось в среднем на 20% Время в пути сократилось на 10– 30% Уровень загрязнения (оценочный) снизился на 10% Сдвиг в сторону использования общественного транспорта Эксплуатационные расходы: 20% от валового дохода В ходе испытания новой системы население Стокгольма изменило отношение к плате за дорожные пробки с негативного на позитивное Решением Парламента плата за дорожные пробки была отнесена в разряд постоянно действующих с 1 августа 2007 года 20. april 2013Как плата за пользование дорогами может повысить безопасность дорожного движения Страница 10 Районы Стокгольма в пределах городской черты


¦¦ Q-Free ASA ¦ Взаимодействие между транспортными средствами и инфраструктурой Взаимодействие между транспортными средствами Типичные сферы: –Активное предотвращение столкновений –Моментальное предупреждение пользователя –Опасные уличные перекрестки –Опасные пешеходные зоны –Скользкие дороги ПЕРСПЕКТИВА: ИНТЕЛЛЕКТУАЛЬНЫЕ ТРАНСПОРТНЫЕ СРЕДСТВА? 20. april 2013Как плата за пользование дорогами может повысить безопасность дорожного движения Страница 11 Придорожная система Центральная система Система транспортного средства Интернет


¦¦ Q-Free ASA ¦ ЭЛЕКТРОННЫЕ НОМЕРНЫЕ ЗНАКИ Все транспортные средства оборудованы электронными метками, позволяющими –Обеспечивать сохранность электронного номерного знака –Оплачивать пользование дорогами –Контролировать дорожное движение Европейские стандарты (EN) опубликованы в этом году В последующие годы планируется внедрение в Бразилии, Португалии и, возможно, также в Норвегии Радиоинтерфейс на основе EN DSRC (специализированная связь малого покрытия) 20. april 2013Как плата за пользование дорогами может повысить безопасность дорожного движения Страница 12


¦¦ Q-Free ASA ¦20. april 2013Название презентации Страница 13 Амстердам, 25 марта 2010 года Интеллектуальные транспортные системы (ITS): общая картина 13 СПУТНИКОВЫЕ СРЕДСТВА СВЯЗИ НАЗЕМНЫЕ РАДИОСТАНЦИИ МОБИЛЬ НАЯ ТЕЛЕФОН НАЯ СВЯЗЬ ОБЩЕГОР ОДСКАЯ СЕТЬ БЕСПРОВОДНАЯ СЕТЬ ПЕРЕДАЧИ ДАННЫХ Навигация Связь между транспортными средствами Адаптивный круиз- контроль Управление автопарком Системы обеспечения безопасности Межтранспортные средства связи Информация для пассажиров Дорожные услуги Дорожные знаки Планирован ие маршрутов Сбор дорожных пошлин ©ETSI 2008


¦¦ Q-Free ASA ¦ Потребности в мобильности –Потребности в дорожных услугах неуклонно растут. Все большее количество транспортных средств будет включаться в дорожное движение. По мере увеличения интенсивности дорожного движения стоимость устранения риска несчастных случаев со смертельным исходом будет все более возрастать. Финансирование инфраструктуры –Большинство стран столкнется с ситуацией, когда средств, доступных для усовершенствования дорожно-транспортных услуг, окажется недостаточно. Плата за пользование дорогами –Плата за пользование дорогами может стать единственно возможным вариантом обеспечения необходимых средств. Плата за пользование дорогами уже доказала свою эффективность и будет оставаться одним из важнейших факторов повышения безопасности дорожного движения. Транспортные средства –Транспортные средства становятся все более интеллектуальными и способными взаимодействовать между собой во избежание опасных ситуаций на дороге. КРАТКИЕ ИТОГИ И НАПРАВЛЕНИЕ ДАЛЬНЕЙШИХ ДЕЙСТВИЙ 20. april 2013Как плата за пользование дорогами может повысить безопасность дорожного движения Страница 14


¦¦ Q-Free ASA ¦20. april 2013 Страница 15Как плата за пользование дорогами может повысить безопасность дорожного движения Спасибо за внимание! Указывая путь...

Во второй половине прошлого века к профессиональным специалистам стало приходить понимание и осознание того, что потенциальные возможности индустриальной экономики практически исчерпали себя для роста экономической эффективности. В это время стали формироваться, развиваться и распространяться способы, методы, технологии, элементы и системы интеллектуальной экономики. Данное обстоятельство привело к появлению и развитию интеллектуального менеджмента, маркетинга, логистики и других концепций управления, как показывают анализы данных статистики и тематики научных школ . Международная, трансграничная и национальная логистики становятся постепенно интеллектуальными и требуют формирования понятия, миссии, целей задач, функций, интегральной логики, принципов и методов, стратегии и тактики интеллектуальных логистических систем. А также непосредственного участия всех структурных элементов в эволюции цепей поставок в международной логистике, использования современных инновационныхи информационных технологий в логистике. Интеллектуальная транспортная логистическая система является основной частью интеллектуально логистики. Интеллектуальная транспортная система (ИТС, англ. Intelligenttransportationsystem) - это такая интеллектуальная система, которая использует инновационные разработки в моделировании транспортных систем и регулировании транспортных потоков, предоставляющая конечным потребителям большую информативность и безопасность, а также качественно повышающая уровень взаимодействия участников движения по сравнению с обычными транспортными системами. История создания и развития ИТС берет своё начало в 1980 -х годах в таких странах, как США, Япония, а также страны Европы. На сегодняшний вместе с Японией самыми передовыми технологиями в области ИТС выступают на мировом уровне Сингапур и Южная Корея. Интерес к изучению и внедрению ИТС связан с возникновением проблемы дорожных заторов, следовательно, возникла необходимость в объединении современных технологий моделирования, управления в реальном времени, а также коммуникационных технологий. Дорожные заторы - результат увеличивающейся автомобилизации, урбанизации, а также как роста населения, так и увеличивающейся плотности заселения территории. Они уменьшают эффективность дорожно-транспортной инфраструктуры, увеличивают время пути, расход топлива и уровень загрязнения окружающей среды. Последняя деятельность правительства в области ИТС дополнительно мотивируется увеличением внимания к внутренней безопасности, так как многие из предложенных систем ИТС также включают наблюдение за дорогами, что является приоритетом национальной безопасности. Главный фактор внедрения ИТС - участие государства очень важно для создания всех условий для формирования единой ИТС. Государство может обеспечить: все условия для разработки единой национальной информационной и коммуникационной базы сбора данных и оповещения, безопасность этих данных для их использования, поддержку, то есть финансирование и продвижение исследований в области новейших технологий в этой сфере. Например, в Европейском Союзе благодаря участию государств при разработке единой ИТС было проведены следующие мероприятия: анализ транспортных сетей, автоматическое определение мест дорожно-транспортных происшествий, информирование граждан благодаря специальным навигационным системам о состоянии дорожного движения. Зарубежный опыт внедрения ИТС. Сингапур. В Сингапуре на дорогах присутствуют детекторы транспорта, которые стоят на каждых 500 метрах, а также видеокамеры - на каждом километре трасс, причём ими оборудован каждый светофор и городские автобусы. Также каждое такси оборудовано транспондерами - приборами, которые позволяют отслеживать нахождение машины и её скорость. Вся информация, полученная с этих средств, собирается единым центром управления дорожного движения. Также зелёный свет на зебре включается нажатием кнопки на светофоре (GREEN LINK DETERMINING (GLIDE) SYSTEM) , а пожилые люди или инвалиды могут приложить к ней свою специальную смарт-карту, что увеличит время перехода на противоположную сторону (GREEN MAN +) . В Сингапуре действует планировщик поездок, который базируется на такси, потому что все машины имеют GPS-датчики, которые собирают и направляют информацию о перемещениях в диспетчерскую. С помощью этих данных вычисляется средняя скорость движения по основным автомагистралям, и планировщик корректирует выдаваемую информацию. Также существует программа камер J-Eye, установленных в Сингапуре, с помощью которой можно отслеживать пробки и автомобили, которые припаркованы с нарушением правил дорожного движения . Активно используются радиоканалы, по которым передаются сводки о загруженности ключевых дорог и развязок. В часы пик информирование граждан учащается. Такой же пример оповещения водителей можно встретить в Сеуле (Республика Корея), но в отличие от Сингапура, такой вид уведомления в этом городе действует на государственном уровне, то есть на государственном радиоканале. Также в Сингапуре, как и в Сеуле и Гонконге, можно следить за движением транспорта в режиме онлайн. Япония. В Японии около трасс располагаются фиксированные приборы и датчики движения, которые помогают собирать информацию о ситуациях на автомагистралях в Информационный центр Дорожного движения, через который собранные и отредактированные данные о дорожных пробках, ДТП или ремонтных работах передаются на навигационные системы транспортных средств пользователей. Также очень важна информация от самих участников дорожного движения, которые могут её отправлять через свои мобильные устройства . В Японии также действует система мониторинга местоположения автобусов, но эта система не так популярна, так как этот вид транспорта пользуется низким спросом у горожан. Основа ИТС Японии - система автомобильной информации и связи (VICS), на базе которой делают навигаторы для машины и через которую можно получить GPS-данные о загруженности дорог и объездных путях. Данные передаются с специальных придорожных передатчиков и маяков, которые и установили ещё в 1995 году. Соединенные Штаты Америки. США используют стандарт DSRC(перев. Выделенные связи малой дальности), продвигаемый американской общественной организацией интеллектуального транспорта и департаментом транспорта США . DSRC-односторонний или двусторонний беспроводной канал связи, а также набор протоколов и стандартов, который специально предназначен для автомобильного использования. Эта система позволяет осуществлять аварийные предупреждения для автомобилистов, адаптивный круиз-контроль, предупреждение о лобовом столкновении, осмотр транспортного средства безопасности, электронные платежи парковки, электронный сбор пошлин, сбор данных датчиков, предупреждение о возможности перевернуться, коммерческое оформление и безопасность инспекционных транспортных средств. В городе Бостоне можно увидеть противопожарные датчики и детекторы загрязнения воздуха, которые находятся на протяжении в Десятиполосного Большого бостонского тоннеля, так как в тоннелях сложно зафиксировать с камер наблюдения различные возгорания или технические неполадки, где они предоставляют наибольшую опасность. Китай. В Китае в Гонконге существует единая система проезда Octopus (такие же встречаются в Республике Корея - T-Money), с помощью которой можно оплачивать проезд на всех видах общественного транспорта, парковку, а также как приятный бонус - мелкие покупки в супермаркетах и билеты в кино . Также в Гонконге действует единая система управления светофорами, которая управляет транспортные и пешеходные светофоры с помощью сенсорных проводов, расположенных под асфальтом. Эти провода определяют количество скопившихся на дороге машин, поэтому зелёный свет начинает гореть дольше на том направлении, на котором стоит большее число машин. Зачастую из нескольких близко расположенных дорог делают «зелёную» зону (улицу), чтобы поток, пройдя один перекрёсток, не задерживался на другом. Каждый водитель может приобрести специальную электронную программу, содержащую интерактивную карту дорог (RoadNetworkData) со всеми уличными знаками и специальными сигналами (DigitizedTrafficAidsDrawings), а также статистическими данными о пробках (TrafficCensusData). Обновления этой программы выходят регулярно. В Гонконге, как и в Нью-Йорке на транспортном узле Ла Гуардия, дорожные знаки оснащены светодиодами, которые лучше видно в темноте, а также они существенно экономят электричество. В зависимости от времени суток и загруженности определённого участка дороги включаются разные по цвету индикаторы. Австралия. В городе Брисбене существует полезная функция для водителей - система помощи при парковке. Суть заключается в специальных мониторах, на которых транслируется информация о свободных местах, а также около 10 адресов ближайших парковок. Эта компьютерная система действует благодаря системе Wi-Fi. Через город Брисбен проходит многополосное шоссе до аэропорта Квинсленда. Вдоль полос шоссе установлены специальные камеры, которые фотографируют номер машины, далее происходит идентификация владельца, с кредитной карты которого списывается необходимая плата за проезд. Это помогает избежать многокилометровых пробок. К сожалению, развитие ИТС в России, по мнению автора, осуществляется медленными темпами.

Использование современных достижений информационных технологий и средств связи - телематики - в управлении транспортными системами позволяет кардинально повысить эффективность и качество их работы. Поэтому транспортные системы с использованием АСУ, построенных на основе телематики, получили во всем мире специальное наименование - интеллектуальные транспортные системы (ИТС).

итс - это система, интегрирующая современные технологии управления с телематикой, предназначенная для автоматизированного поиска и принятия наиболее эффективных сценариев управления ТС и ее элементов в целях обеспечения мобильности при установленном уровне качества обслуживания пользователей ТС.

Отличительный признак ИТС - автоматическое (или с минимальным участием оператора) формирование управляющих воздействий в режиме реального времени на объекты ТС. Для этого в системе должна функционировать обратная связь, обеспечивающая автоматическую передачу оперативных данных о работе объектов ТС в блок управления. На их основе с помощью математических моделей вырабатываются прогнозные управляющие решения, которые реализуются в средствах управления.

В мировой практике ИТС признаны как общетранспортная идеология интеграции достижений современных методов управления и телематики во все виды транспортной деятельности для решения проблем экономического и социатьного характера: повышения эффективности функционирования пассажирского и грузового транспорта, снижения транспортных расходов, обеспечения транспортной безопасности и улучшения экологических показателей.

Практическое развитие крупномасштабных проектов ИТС началось в середине 1980-х гг. в США, Японии и Европе, когда стали доступны для бизнес-приложений персональные компьютеры, сотовая связь и технологии космического позиционирования.

Развитие ИТС методологически базируется на системном подходе, формируя ИТС не как отдельные функциональные блоки, а как систему. Подходы к созданию ИТС основываются на принципе модернизации, реинжиниринга действующих ТС путем поэтапного развития и модульности создания ИТС. Принцип модульности требует четкого общего плана построения ИТС, в рамках которого реализуемые отдельные модули будут в дальнейшем гарантированно совместимы с модулями, реализуемыми на последующих стадиях проекта. Такой план построения системы называется архитектурой. Архитектура ИТС определяет основные принципы организации ИТС и взаимосвязи компонентов ИТС между собой и с внешней средой, а также принципы и руководство по их разработке, внедрению и оценке эффективности использования. Архитектура ИТС представляет собой некую рамочную структуру, в границах которой могут быть использованы различные подходы к проектированию с учетом конкретного функционала системы и необходимых пользователям сервисов. В нашей стране основополагающим документом по построению архитектуры ИТС является ГОСТ Р ИСО 14813-1-2011. Интеллектуальные транспортные системы. Схема построения архитектуры интеллектуальных транспортных систем. Часть 1. Сервисные домены в области интеллектуальных транспортных систем, сервисные группы и сервисы. Используемая в стандарте иерархия построения архитектуры ИТС приведена на рис. 4.23.

Рис. 4.23.

Доменная архитектура формирует общее комплексное представление о структуре объектов и субъектов ИТС. При этом для каждого проекта системы набор и функциональное описание объектов и субъектов может носить индивидуальный характер.

Сервисный домен включает в себя один или более типов сервисов ИТС. Каждый тип сервиса ИТС может содержать несколько случаев связанных сервисов. Эти объединения представителей связанных сервисов называются сервисными группами ИТС. Таким образом, сервисная группа ИТС включает в себя один или более похожих или взаимодополняющих сервисов, предназначенных для пользователей ИТС.

Необходимо выделить следующие особенности сервисных групп ИТС и сервисов:

  • каждая сервисная группа ИТС ориентирована на определенную деятельность, относящуюся к управлению или информационному обеспечению в сфере дорожной транспортной сети, и разделена на конкретные сервисы, адресованные, в свою очередь, конкретным пользователям или используемые для различных режимов функционирования;
  • наименование каждой сервисной группы должно отражать вид осуществляемой деятельности (например, «дотранспоргная информация»);
  • каждый сервис в рамках сервисной группы должен связывать как вид деятельности сервисной группы, так и характер пользователей или режимов функционирования ИТС (например, «дотранспортная информация - общественный транспорт»);
  • каждый уровень в иерархии должен быть на эквивалентном уровне модульности системы.

Практическое применение

В середине 1990-х гг. стало ясно, что потенциал многих европейских исследовательских программ в области транспортной телематики не может быть полностью реализован. Для решения проблемы требовалось создание единого подхода к европейской архитектуре ИТС. Эта задача была решена в 1998-2000 гг. в ходе реализации проекта KAREN. В результате была разработана структура для внедрения ИТС в Европейском союзе .

Европейская архитектура ИТС состоит из двух частей: пользовательских сервисов ИТС (см. ГОСТ Р ИСО 14813-1-2011) и функциональной архитектуры (Functional Viewpoint), обеспечивающей реализацию указанных сервисов. Физическая и коммуникационная структуры не входят в состав регламентируемых составных частей архитектуры ИТС. Согласно подходам, заложенным в основу европейской архитектуры ИТС, предполагается создание индивидуальной физической и коммуникационной среды ИТС в каждом конкретном случае, с учетом конкретных особенностей и потребностей в сервисах, па основе общих принципов и в соответствии с общей моделью разработки.

С учетом важности синхронизации проектов ИТС в области различных видов транспорта и в различных странах в 2008 г. в ЕС принят План по развитию ИТС в Европе (СОМ(2008) 886), а в 2010 г. Европейским парламентом принята Директива ЕС 2010/40/EU по развитию ИТС в области автомобильного транспорта и взаимодействия с системами других видов транспорта .

Развитие ИТС сгруппировано по шести приоритетным направлениям:

  • оптимального использования информации о дорогах, движении и поездках, которое предусматривает получение актуальной и проверенной информации на всех уровнях управления транспортом независимо от формы собственности оператора и вида транспорта и обеспечивает ее доступность для всех пользователей;
  • обеспечения условий для безбарьерного движения товаров и оптимального управления грузовыми перевозками на европейских транспортных коридорах и в городских агломерациях за счет автоматической идентификации транспортных единиц, предоставления различных услуг (например, таможенных) в режиме онлайн и пространственного позиционирования на основе космических навигационных систем;
  • повышения безопасности дорожного движения за счет развития автоматических систем, предупреждающих и предотвращающих опасные ситуации как между транспортными средствами, так и между автомобилями и пешеходами;
  • обеспечения безопасности и защиты передаваемых данных в ИТС, в частности личных и финансовых данных пользователей;
  • интеграции транспортного средства в транспортную инфраструктуру за счет использования открытых приложений в компьютерных системах транспортных средств и программном обеспечении ИТС, позволяющему обеспечить совместимость информационных систем и автоматически передавать данные, необходимые для оптимального управления как индивидуальными транспортными средствами, так и их потоками.

Согласованное внедрение ИТС в ЕС требует интенсивного сотрудничества на европейском уровне между всеми сторонами на разных уровнях управления, а также надлежащей структуры и нормативно-правовой базы. Необходимо разработать общие методы оценки и единые инструменты для реализации эффективных решений.

На рис. 4.24 приведена укрупненная классификация ИТС по направлениям автоматизации транспортных систем.

Все указанные в классификации на рис. 3.1 направления в настоящее время успешно развиваются и имеют примеры практического применения. Естественно, что разработка и внедрение ИТС сопряжены со значительными расходами, но, учитывая их стратегическую значимость для развития транспорта, крайне важно готовить элементы этих систем и развивать транспорт с учетом необходимости в будущем построения комплексной ИТС. В соответствии с концепцией ИТС должны строиться концепции и конкретные планы развития дорожных, грузовых и пассажирских ТС.

Набор сервисов ИТС из разных доменов может формировать блок сервисов, реализуемых для решения первостепенной задачи или набора задач, сохраняя при этом возможность развития в дальнейшем полнофункциональных доменов. Например, для повышения безопасности дорожного движения важно развивать следующие сервисы:

  • автоматический контроль соблюдения правил дорожного движения;
  • предупреждение о заторах и ремонтных работах и рекомендации по путям объезда;
  • оповещение о погодных условиях и состоянии дорожного полотна;
  • автомобильные системы распознавания дорожных знаков, поддержания движения по полосе, автоматического ограничения скорости движения, адаптивного круиз-контроля, предупреждения об опасном сближении и т.п.;
  • управление режимами движения (в первую очередь скоростью) с помощью знаков переменного значения;
  • мониторинг и управление перевозками опасных грузов;
  • мониторинг и управление движением в тоннелях и на скоростных магистралях.

В нашей стране в области ИТС наибольшее развитие получили системы управления дорожным движением. Их развитие на принципах ИТС позволяет перейти от управления отдельными светофорными объектами к управлению движением на автомобильных дорогах, зонах улично-дорожной сети или в целом движением в городе. Для реализации сервисов ИТС в этом случае создаются АСУ автомагистралью, зональные АСУ или АСУ дорожного движения (ДД) города. В последних двух случаях наиболее эффективно использование сетевых адаптивных методов управления дорожным движением.


Рис. 4.24.

Практическое применение

Одним из первых и до сих пор наиболее широко применяемых в мире алгоритмов сетевого адаптивного управления является SCOOT (Split Cycle Offset Optimization Technique - техника оптимизации длительностей фаз, цикла и сдвига), разработанный в середине 1970-х гг. британским Институтом TRL(7ota/ Request Live) совместно с фирмами «Plessey» и «Реек». Система SCOOT установлена более чем в 100 городах Великобритании и десятках городов во всем мире. Зона управления SCOOT в г. Лондоне охватывает около 2000 регулируемых перекрестков.

Район управления в SCOOT разбивается на подрайоны. В пределах каждого подрайона обеспечивается сетевая координация работы светофорных объектов с единым циклом регулирования. Принцип разбиения на подрайоны - стандартный: разрыв координации осуществляется на длинных или слабо загруженных перегонах.

Система сбора информации о транспортных потоках предполагает мониторинг транспортных потоков на каждой полосе движения непосредственно перед стоп-линией и на значительном расстоянии от нее, как правило, у выхода со смежного перекрестка. Алгоритм использует получаемую в реальном времени информацию об интенсивности транспортных потоков и времени проезда транспортными средствами удаленных от стоп-линий сечений.

Процесс оптимизации параметров регулирования в SCOOT имеет трехуровневую структуру, каждый уровень которой соответствует оптимизации одного типа параметров.

На верхнем уровне для каждого подрайона выполняется оптимизация цикла регулирования, и для оптимизированного цикла определяются базовые длительности фаз на каждом перекрестке. Расчет оптимального цикла для группы перекрестков выполняется каждые 5 мин или, если наблюдается быстрое изменение интенсивности, каждые 2,5 мин. Считается, что цикл требует увеличения, если уровень загрузки наиболее загруженного перекрестка превышает 90%. Аналогично, при снижении уровня загрузки наиболее загруженного перекрестка происходит сокращение цикла. Таким образом, в течение суток длительность цикла на перекрестке плавно изменяется в соответствии с динамикой изменения интенсивности транспортных потоков.

Оптимизация сдвигов выполняется один раз в цикл. В каждом цикле существует возможность изменения сдвига не более чем на 4 с. Для оптимизации сдвигов используется специальный алгоритм, для которого необходима информация о времени проезда транспорта между смежными стоп- линиями и о взаимосвязях транспортных потоков. Времена проезда могут корректироваться в режиме реального времени путем сравнения прогнозируемых и наблюдаемых диаграмм интенсивностей транспортных потоков на подходах к стоп-линиям. При используемой в SCOOT схеме расстановки датчиков установить взаимосвязь потоков на смежных стоп-линиях можно с полной определенностью, если движение по полосам строго специализированное (по каждой полосе в зоне перекрестка транспорт движется в единственном направлении), и с высокой вероятностью - при отсутствии строгой специализации полос.

На нижнем уровне - уровне перекрестка - происходит уточнение моментов переключения фаз и принимается решение об увеличении или уменьшении длительности фазы на значение не выше 4 с. Эта процедура выполняется перед каждым переключением фаз и основывается на краткосрочном прогнозе транспортной ситуации на перекрестке. Прогноз позволяет оценить длину очереди и, следовательно, задержку на каждой стоп-линии перекрестка для каждого из возможных моментов переключения фаз.

Критерием оптимальности при выборе управляющих параметров является взвешенная сумма задержек и остановок транспортных средств.

Характерными особенностями SCOOT являются использование большого количества детекторов транспорта, отсутствие скачкообразных изменений параметров регулирования, отсутствие долгосрочного (на цикл и более) прогноза транспортной ситуации.

Техническая реализация SCOOT предусматривает централизованное управление и не предъявляет высоких требований к локальным контроллерам.

Применяемые в настоящее время модификации SCOOT обеспечивают приоритетный пропуск общественного транспорта.

Анализ результатов внедрения ИТС свидетельствует о существенном потенциале повышения эффективности функционирования транспортных систем :

  • управление движением на улично-дорожной сети позволяет снизить задержки на 5-40% в зависимости от используемой системы управления и развития информирования пользователей;
  • управление движением по автомагистралям позволяет снизить количество аварий на 40%, повысить пропускную способность и снизить общее время поездки на 60%;
  • система информационного обеспечения коммерческих перевозок позволяет снизить расходы собственников грузового транспорта на 35%;
  • управление движением транспорта общего пользования позволяет уменьшить время поездки в два раза и повысить надежность выполнения расписания на 35% за счет системы пространственного позиционирования и приоритета на регулируемых пересечениях;
  • система управления инцидентами позволяет снизить их длительность на 40%.

Наиболее наглядно возможности ИТС представлены в системах PRT (Personal Rapid Transit ), PAT (Personal Automated Transport: - персональный автоматический транспорт). Это системы общественного транспорта, которые обеспечивают безостановочную перевозку пассажиров по их запросу с помощью автоматических транспортных средств без водителя. Система PRT использует собственную транспортную сеть, которая может быть выполнена в виде дорожного полотна с направляющими устройствами, рельсового пути либо монорельса, а также в виде комбинации этих устройств. Пользователь на остановочном пункте выбирает пункт назначения, и система подает свободный вагон или направляет сюда попутный. Вагон с учетом топологии сети самостоятельно выбирает кратчайший путь до пункта назначения. Вся система имеет централизованное компьютерное управление на уровне распределения вагонов и обеспечения безопасности.

Первая система PRT эксплуатируется с 1975 г. в городе Моргантауне в США, где связывает учебные здания местного университета с несколькими комплексами студенческих общежитий. Общая протяженность сети 13,9 км, на которой имеется семь остановочных пунктов. В системе эксплуатируется 73 полностью автоматических вагонов. Вагоны системы вмещают 20 человек и передвигаются по подогреваемому в зимнее время бетонному полотну с направляющими со скоростью до 30 км/ч. Стоимость системы составила более 60 млн долл. США. Система бесплатно обслуживает 20 тыс. студентов, а для жителей города разовая поездка стоит 0,5 долл. Ввиду того что система проектировалась в начале 1970-х гг., она не имеет полного централизованного компьютерного управления, что компенсируется работой трех диспетчеров.

Наиболее современная система PRT в 2009 г. введена в строй в лондонском аэропорту Хитроу, где она связывает пятый, наиболее современный, терминал с удаленными автостоянками. Это первая полностью коммерческая система PRT в мире, и если эксплуатация будет успешной, ее существенно расширят. Система протяженностью 3,9 км имеет три станции и обслуживается 21 вагоном, может развивать скорость до 40 км/ч. Среднее время ожидания вагона после вызова составляет 12 с, а максимальное для 95% пользователей - не более 1 мин.

  • Кабашкин И. В. Интеллектуальные транспортные системы: интеграция глобальныхтехнологий будущего // Транспорт Российской Федерации. 2010. № 2 (27). С. 34-38.
  • Intelligent Transport Systems in action. Action Plan and Legal Framework for theDeployment of ITS in Europe / Directorate-General for Mobility and Transport ; EuropeanCommission. Luxembourg: Publications Office of the European Union, 2011.
  • Benefits of Intelligent Transportation Systems Technologies in Urban Areas: A LiteratureReview. Final Report // Center for Transportation Studies of Portland State University. 2005.April.

Интеллектуальная транспортная система (ИТС) - совокупный технический и технологический комплекс систем, объединяющий подсистемы безопасности отдельных транспортных средств и организации безопасного дорожного движения в целом, а также предоставления информационного сервиса для участников дорожного движения и потенциальных субъектов транспортного процесса .

Отличительной особенностью современных ИТС является изменение статуса транспортной единицы от независимого, самостоятельного и в значительной степени непредсказуемого субъекта дорожного движения в сторону «активного», предсказуемого субъекта транспортно-информационного пространства. В этой связи одной из ключевых задач является развитие телематического комплекса дорожной инфраструктуры .

Оперативной задачей ИТС является осуществление и поддержка возможности автоматизированного и автоматического взаимодействия всех транспортных субъектов в реальном масштабе времени на адаптивных принципах .

Ключевым в построении ИТС является комплекс дорожно- транспортной, транспортно-технологической, транспортно-сервисной и информационной инфраструктуры. Фактически этот комплекс представляется как совокупность подсистем, в которой предусмотрена функция диспетчерского, оперативного и ситуационного координирования взаимодействия вовлеченных служб, ведомств и иных субъектов. Для организации такого взаимодействия необходимо создавать региональные диспетчерские центры. На федеральном (межведомственном) уровне необходимо сформировать единый орган контроля и надзора, реализующий функции сбора обобщенной информации, разработки планов реконструкции и доразвития дорожной системы, мониторинга индикаторов эффективности работы.

Построение ИТС невозможно без разработки и реализации проектных решений по формированию среды (комплекса) связи, учитывающей все виды связевого взаимодействия, от проводных (высокоскоростные оптоволоконные сети) до беспроводных (стандарты связи, доступные от операторов сотовой связи и радио до Интернета и транкинговых типов связей) .

Функциональная архитектура определяет модульную структуру ИТС, в которой прописываются целевые направления развертывания

ИТС (безопасность, организация дорожного движения, мониторинг на дороге и в транспортном средстве), а также целевые группы задач, вокруг которых формируются комплексы подсистем ИТС (подсистемы ИТС в транспортных средствах, в дорожной инфраструктуре, интегрированные подсистемы). К уровню модулей отнесено определение объектов ИТС (по назначению транспорта: коммерческие или индивидуальные и по функциональному охвату - подсистемы ИТС в дорожном хозяйстве).

Рис. 1.3.

Структура объектов ИТС в значительной степени определяет комплекс групп подсистем, являющихся в соответствии с мировым опытом частью комплексных проектов ИТС. К группам подсистем относятся подсистемы диспетчерского управления всеми категориями транспорта, выполняющего коммерческие и целевые перевозки, подсистемы управления транспортными потоками, подсистемы информационного сервиса, а также группы подсистем дорожного хозяйства, в том числе по контролю транспортной ситуации и за состоянием дороги. Данные группы подсистем наиболее часто являются предметом целевого заказа на проектирование и могут существовать как интегрированно в составе ИТС, так и самостоятельно. Эти группы характеризуются региональным (муниципальным) уровнем контроля.

Посредством стандартизации телематических элементов и стандартов передачи информации формируются требования к параметрам оборота информации как внутри ИТС по технологическим задачам подсистем, так и с внешними информационными системами, в том числе с информационными системами других видов транспорта, оперативных служб органов исполнительной власти, имеющих компетенции и функции пользователей в сфере ИТС, а также в информационные системы уровня контролирующей надстройки (региональной, министерской, федеральной) в соответствии с формализованными требованиями к данной функции информационного обмена .

Другая форма классификации функций ИТС описывается иерархической структурой и процессами подсистем ИТС.

Подсистемы ИТС включают в себя несколько процессов. Каждый процесс характеризуется как конкретными функциями, так и параметрами, которые предъявляют требования к входной и выходной информации, а также к способу обработки информации. К требованиям к входной информации отдельных процессов относятся, кроме прочего, и частоты входной информации, определение интерфейсов входной информации, требования к передаче входной информации отдатчиков и т. д. К требованиям обработки информации в рамках процесса относятся, в частности, защищенность и надежность данных в процессах обработки, свойства используемых алгоритмов и т. д.

Для надежного функционирования телематических приложений следует обеспечить синхронизацию между отдельными процессами. Эта синхронизация может быть кодовая, чтобы обмен информацией происходил по согласованным протоколам, временная - для приведения массива информации к единой шкале времени, и пространственная, которая требует, чтобы информация была отнесена к единой общей точке пространства (например, к местоположению транспортных средств или товара при мультимодальных перевозках).

Физическая архитектура определяет требования, предъявляемые к программному обеспечению и аппаратным средствам информационных и телекоммуникационных технологий, включая их пространственную локализацию. В соответствии с установленной функциональной и информационной архитектурой следует определить конкретные физические решения телематических элементов и программное обеспечение ИТС (рис. 1.4). Критериями для принятия решений являются функциональность, безопасность, надежность и, не в последнюю очередь, общие расходы, связанные с приобретением и эксплуатацией системы.

Рис. 1.4.

Физическая архитектура первого уровня обусловлена выбором датчиков и исполнительных элементов (рис. 1.5). Между первым и вторым уровнями осуществляется передача самых важных данных, которая в большинстве случаев тесно связана с безопасностью дорожного движения и управлением транспортными потоками. Передача между первым и вторым уровнями обычно обеспечивается с помощью собственной специальной телекоммуникационной среды, которая должна гарантировать удовлетворение требованиям к защищенности, доступности и надежности передачи информации.

Второй уровень обрабатывает данные и осуществляет зональное управление. Он образуется в основном вычислительной техникой, состав которой определяется в соответствии с требованиями к обрабатываемой информации.

Телекоммуникация между вторым и третьим уровнями реализуется в соответствии с требованиями конкретных процессов. Эти требования весьма разнообразны. Обычно предполагается, что приблизительно половина информации передается без требований к надежности, доступности и защищенности, в то время, как передача второй половины должна гарантировать удовлетворение этим требованиям.


Рис. 1.5.

Третий уровень определен информационными технологиями управления и логистики крупнейших транспортных областей. Выбор программного обеспечения и аппаратных средств осуществляется исходя из требований отдельных процессов.

Телекоммуникационная среда между третьим, четвертым и пятым уровнями в подавляющем большинстве случаев образуется обычной средой одного из существующих операторов постоянных сетей. Передача в транзитном слое телекоммуникационных сетей отличается высокой степенью доступности и высоким качеством среды.

Пилотные проекты, направленные на поддержку систем безопасности для водителей, реализованные в разных странах, показывают, что можно существенно снизить количество происшествий и при этом повысить эффективность процесса проверки. Одним из перспективных проектов является «Интеллектуальная автомагистраль». В этом проекте нагрузку, связанную со сбором информации и передачей ее водителю, берет на себя инфраструктура, созданная вдоль дорог. В таком случае не надо оборудовать каждый автомобиль комплексной техникой, но, несмотря на это, сохраняется возможность как минимум однонаправленной связи с автомобилем, например, с помощью RDS-TMC или с помощью информирующих дисплеев.

Рис. 1.6.

о - ситуационное управление в ИТС }